Locally Adaptive Smoothing with Markov Random Fields and Shrinkage Priors
نویسندگان
چکیده
منابع مشابه
Bayesian trend filtering: adaptive temporal smoothing with shrinkage priors
Abstract We present a locally-adaptive nonparametric curve fitting method that we call Bayesian trend filtering. The method operates within a fully Bayesian framework and uses shrinkage priors to induce sparsity in order-k differences in the latent trend function, providing a combination of local adaptation and global control. Using a scale mixture of normals representation of shrinkage priors,...
متن کاملReference Priors for Shrinkage and Smoothing Parameters
A reference prior and corresponding reference posteriors are derived for a basic Normal variance components model with two components. Di¤erent parameterizations are considered, in particular one in terms of a shrinkage or smoothing parameter. Earlier results for the one-way ANOVA setting are generalized and a broad range of applications of the general results is indicated. Numerical examples o...
متن کاملExact Optimization for Markov Random Fields with Convex Priors
We introduce a method to solve exactly a first order Markov Random Field optimization problem in more generality than was previously possible. The MRF shall have a prior term that is convex in terms of a linearly ordered label set. The method maps the problem into a minimum-cut problem for a directed graph, for which a globally optimal solution can be found in polynomial time. The convexity of ...
متن کاملAdaptive Bayesian Shrinkage Estimation Using Log-Scale Shrinkage Priors
Global-local shrinkage hierarchies are an important, recent innovation in Bayesian estimation of regression models. In this paper we propose to use log-scale distributions as a basis for generating familes of flexible prior distributions for the local shrinkage hyperparameters within such hierarchies. An important property of the log-scale priors is that by varying the scale parameter one may v...
متن کاملMarkov Random Fields and Conditional Random Fields
Markov chains provided us with a way to model 1D objects such as contours probabilistically, in a way that led to nice, tractable computations. We now consider 2D Markov models. These are more powerful, but not as easy to compute with. In addition we will consider two additional issues. First, we will consider adding observations to our models. These observations are conditioned on the value of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bayesian Analysis
سال: 2018
ISSN: 1936-0975
DOI: 10.1214/17-ba1050